35 research outputs found

    Carbon nanofoam supercapacitor electrodes with enhanced performance using a water-transfer process

    Get PDF
    Carbon nanofoam (CNF) is a highly porous,amorphous carbon nanomaterial that can be produced through the interaction of a high-fluence laser and a carbon-based target material. The morphology and electrical properties of CNF make it an ideal candidate for super-capacitor applications. In this paper, we prepare and characterize CNF supercapacitor electrodes through two different processes, namely, a direct process and a water-transfer process. We elucidate the influence of the production process on the microstructural properties of the CNF, as well as the final electrochemical performance. We show that a change in morphology due to capillary forces doubles the specific capacitance of the wet-transferred CNF electrodes

    Controlled assembly and reduction of graphene oxide networks for conductive composites

    Get PDF
    Work presented at the 2019 ACS Spring National Meeting, March 28-April 4, 2019 · Orlando, FL.Graphene has attracted enormous interest in the scientific community as the first 2D material with exceptional mechanical, electronic and thermal properties. Pristine Graphene is notoriously difficult to process for macroscale applications, to overcome this many people use graphene oxide (GO) instead. GO is water soluble and easily functionalised and so can be simply processed into various systems. GO lacks the exceptional electronic properties of graphene due to structural disorder, therefore an important area of research is on the reduction of GO, which partly restores the structure and properties of graphene. Various techniques have been developed to perform the reduction step. We report a simple approach for preparing conductive Polymer Latex-rGO composites by using a latex-assembly method. After a treatment in the oven at low T, we can reduce the GO in situ. We make use of the inherent GO properties to optimise the aqueous composite fabrication, which is scalable and adaptable, and then restore conductivity with a simple, low temperature, heating step; opening up pathways to tunable electronic composite materials on a large scale.Peer reviewe

    Predictive Power of the "Trigger Tool" for the detection of adverse events in general surgery: a multicenter observational validation study

    Get PDF
    Background In spite of the global implementation of standardized surgical safety checklists and evidence-based practices, general surgery remains associated with a high residual risk of preventable perioperative complications and adverse events. This study was designed to validate the hypothesis that a new “Trigger Tool” represents a sensitive predictor of adverse events in general surgery. Methods An observational multicenter validation study was performed among 31 hospitals in Spain. The previously described “Trigger Tool” based on 40 specific triggers was applied to validate the predictive power of predicting adverse events in the perioperative care of surgical patients. A prediction model was used by means of a binary logistic regression analysis. Results The prevalence of adverse events among a total of 1,132 surgical cases included in this study was 31.53%. The “Trigger Tool” had a sensitivity and specificity of 86.27% and 79.55% respectively for predicting these adverse events. A total of 12 selected triggers of overall 40 triggers were identified for optimizing the predictive power of the “Trigger Tool”. Conclusions The “Trigger Tool” has a high predictive capacity for predicting adverse events in surgical procedures. We recommend a revision of the original 40 triggers to 12 selected triggers to optimize the predictive power of this tool, which will have to be validated in future studies

    Gestión del conocimiento. Perspectiva multidisciplinaria. Volumen 17

    Get PDF
    El libro “Gestión del Conocimiento. Perspectiva Multidisciplinaria”, Volumen 17 de la Colección Unión Global, es resultado de investigaciones. Los capítulos del libro, son resultados de investigaciones desarrolladas por sus autores. El libro es una publicación internacional, seriada, continua, arbitrada, de acceso abierto a todas las áreas del conocimiento, orientada a contribuir con procesos de gestión del conocimiento científico, tecnológico y humanístico. Con esta colección, se aspira contribuir con el cultivo, la comprensión, la recopilación y la apropiación social del conocimiento en cuanto a patrimonio intangible de la humanidad, con el propósito de hacer aportes con la transformación de las relaciones socioculturales que sustentan la construcción social de los saberes y su reconocimiento como bien público

    Ahora / Ara

    Get PDF
    La cinquena edició del microrelatari per l’eradicació de la violència contra les dones de l’Institut Universitari d’Estudis Feministes i de Gènere «Purificación Escribano» de la Universitat Jaume I vol ser una declaració d’esperança. Aquest és el moment en el qual les dones (i els homes) hem de fer un pas endavant i eliminar la violència sistèmica contra les dones. Ara és el moment de denunciar el masclisme i els micromasclismes començant a construir una societat més igualitària. Cadascun dels relats del llibre és una denúncia i una declaració que ens encamina cap a un món millor

    4to. Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad. Memoria académica

    Get PDF
    Este volumen acoge la memoria académica de la Cuarta edición del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad, CITIS 2017, desarrollado entre el 29 de noviembre y el 1 de diciembre de 2017 y organizado por la Universidad Politécnica Salesiana (UPS) en su sede de Guayaquil. El Congreso ofreció un espacio para la presentación, difusión e intercambio de importantes investigaciones nacionales e internacionales ante la comunidad universitaria que se dio cita en el encuentro. El uso de herramientas tecnológicas para la gestión de los trabajos de investigación como la plataforma Open Conference Systems y la web de presentación del Congreso http://citis.blog.ups.edu.ec/, hicieron de CITIS 2017 un verdadero referente entre los congresos que se desarrollaron en el país. La preocupación de nuestra Universidad, de presentar espacios que ayuden a generar nuevos y mejores cambios en la dimensión humana y social de nuestro entorno, hace que se persiga en cada edición del evento la presentación de trabajos con calidad creciente en cuanto a su producción científica. Quienes estuvimos al frente de la organización, dejamos plasmado en estas memorias académicas el intenso y prolífico trabajo de los días de realización del Congreso Internacional de Ciencia, Tecnología e Innovación para la Sociedad al alcance de todos y todas

    Time to Switch to Second-line Antiretroviral Therapy in Children With Human Immunodeficiency Virus in Europe and Thailand.

    Get PDF
    Background: Data on durability of first-line antiretroviral therapy (ART) in children with human immunodeficiency virus (HIV) are limited. We assessed time to switch to second-line therapy in 16 European countries and Thailand. Methods: Children aged <18 years initiating combination ART (≥2 nucleoside reverse transcriptase inhibitors [NRTIs] plus nonnucleoside reverse transcriptase inhibitor [NNRTI] or boosted protease inhibitor [PI]) were included. Switch to second-line was defined as (i) change across drug class (PI to NNRTI or vice versa) or within PI class plus change of ≥1 NRTI; (ii) change from single to dual PI; or (iii) addition of a new drug class. Cumulative incidence of switch was calculated with death and loss to follow-up as competing risks. Results: Of 3668 children included, median age at ART initiation was 6.1 (interquartile range (IQR), 1.7-10.5) years. Initial regimens were 32% PI based, 34% nevirapine (NVP) based, and 33% efavirenz based. Median duration of follow-up was 5.4 (IQR, 2.9-8.3) years. Cumulative incidence of switch at 5 years was 21% (95% confidence interval, 20%-23%), with significant regional variations. Median time to switch was 30 (IQR, 16-58) months; two-thirds of switches were related to treatment failure. In multivariable analysis, older age, severe immunosuppression and higher viral load (VL) at ART start, and NVP-based initial regimens were associated with increased risk of switch. Conclusions: One in 5 children switched to a second-line regimen by 5 years of ART, with two-thirds failure related. Advanced HIV, older age, and NVP-based regimens were associated with increased risk of switch

    Graphene aerogel with unidireccional pores of tailored size and its application as hydrophobic absorbent and as support for catalytically active nanodiamonds

    Get PDF
    2 figures.-- Work presented at the HeteroNanoCarb Conference 2017, 11th-15th December, Benasque (Spain).It is of fundamental and practical significance to translate the novel physical and chemical properties of individual graphene nanosheets into the macroscale by the assembly of graphene building blocks into macroscopic architectures with control over the porous structure and functionalities. 3D graphene aerogels have some interesting properties such as high specific surface area, open porous network for ion transport, supra-flexibility, tough mechanical strength and conductive framework which lend them high potential for wide application fields such as supercapacitors, oil-water separations, sorbents, chemical reactor platforms and solar cells.[1-2] One way to prepare 3D aerogels is starting from GO sols and its gelation under hydrothermal conditions [2]. The functional groups of GO nanosheets are removed by reduction resulting in a decrease of hydrophilicity and loss of surface charges, which leads to the crosslinking of RGO nanosheets and ultimate phase separation. Herein, we have varied the hydrothermal synthesis conditions (pH, time, and freezing method) to achieve a control over the pore orientation and size of graphene aerogels. The mechanical properties of the aerogels varied from more rigid to flexible materials. In addition, we have been able to synthetize graphene aerogels with aligned channels resembling honeycomb structures (Figure 1). As a proof of concept, the materials have been tested as hydrophobic absorbents of organic compound and as support for nanodiamonds (Figure 2). The nanodiamonds supported on graphene aerogels have been tested for the selective dehydrogenation of propane providing an excellent performance.The financial support from Spanish Ministry MINECO and the European Regional Development Fund (project ENE2016-79282-C5-1-R) and Government of Aragon (Consolidated Group DGAT66)

    Control of the microstructure and surface chemistry of graphene aerogels via pH and time manipulation by a hydrothermal method

    No full text
    Three-dimensional graphene aerogels of controlled pore size have emerged as an important platform for several applications such as energy storage or oil–water separation. The aerogels of reduced graphene oxide are mouldable and light weight, with a porosity up to 99.9%, consisting mainly of macropores. Graphene aerogel preparation by self-assembly in the liquid phase is a promising strategy due to its tunability and sustainability. For graphene aerogels prepared by a hydrothermal method, it is known that the pH value has an impact on their properties but it is unclear how pH affects the auto-assembly process leading to the final properties. We have monitored the time evolution of the chemical and morphological properties of aerogels as a function of the initial pH value. In the hydrothermal treatment process, the hydrogel is precipitated earlier and with lower oxygen content for basic pH values (∼13 wt% O) than for acidic pH values (∼20 wt% O). Moreover, ∼7 wt% of nitrogen is incorporated on the graphene nanosheets at basic pH generated by NH3 addition. To our knowledge, there is no precedent showing that the pH value affects the microstructure of graphene nanosheets, which become more twisted and bent for the more intensive deoxygenation occurring at basic pH. The bent nanosheets attained at pH = 11 reduce the stacking by the basal planes and they connect via the borders, hence leading eventually to higher pore volumes. In contrast, the flatter graphene nanosheets attained under acidic pH entail more stacking and higher oxygen content after a long hydrothermal treatment. The gravimetric absorption capacity of non-polar solvents scales directly with the pore volume. The aerogels have proved to be highly selective, recyclable and robust for the absorption of nonpolar solvents in water. The control of the porous structure and surface chemistry by manipulation of pH and time will also pave the way for other applications such as supercapacitors or batteries.Financial support from Spanish MINECO under project ENE2016-79282-C5-1-R and its associated European Regional Development Fund, as well as from the Government of Aragon under project DGA-T66 and its associated European Social Fund is gratefully acknowledged.N

    Graphene aerogels as catalyst support for nanodiamods and metal nanoparticles

    No full text
    Talk delivered at the 8th International Symposium on Carbon for Catalysis CarboCatVIII, 2018, 26-29 june, Porto (Portugal)Graphene aerogels have emerged as a promising flow-through reactor for adsorption and catalysis due to its high porosity, fluidynamic characteristics and amphiphilic character. Despite these advantages, the application of graphene foams in catalysis is still very scarce. One of the challenges when preparing metal catalyst on graphene is stabilising metal nanoparticles on the low defective graphene surface. To enhance the stable attachment of metal nanoparticles different approaches can be used such as, e.g. the introduction of defects or doping. The preparation of graphene from GO reduction has the advantage that GO has many surface functional groups for doping and the creation of defects. Herein, we have prepared graphene aerogels by hydrothermal treatment of graphene oxide (GO) dispersions in an autoclave. In the autoclave a process of reduction-auto-assembly of GO nanosheets takes place leading to phase separation and precipitation of a hydrogel. The hydrogel transforms into an aerogel after freeze drying. The pore size and surface chemistry of the resulting aerogel can be controlled by manipulating the pH of the synthesis and the time of hydrothermal treatment [4]. The preparation at pH=11 leads toaerogels with higher pore volume (~200 cm3g-1 consisting mainly of macropores and more reduced than at pH=3. The graphene nanosheets have a flat morphology at pH=3 while they are bentand more reduced at pH=11, leading to more open porosity (Figure 1). In addition, aerogels with a 7% of nitrogen mainly of pyridinic-type have been prepared at pH=11 by adding NH3.The financial support from Spanish Ministry MINECO and the European Regional Development Fund (project ENE2016-79282-C5-1-R), and Regional Government of Aragon (DGA-ESF-T66 Grupo Consolidado) are gratefully acknowledged
    corecore